平時學習方面 1、養(yǎng)成良好的學習數(shù)學習慣。
建立良好的學習數(shù)學習慣,會使自己學習感到有序而輕松。高中數(shù)學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。
學生在學習數(shù)學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數(shù)學習慣包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。
2、及時了解、掌握常用的數(shù)學思想和方法 學好高中數(shù)學,需要我們從數(shù)學思想與方法高度來掌握它。中學數(shù)學學習要重點掌握的的數(shù)學思想有以上幾個:集合與對應思想,分類討論思想,數(shù)形結合思想,運動思想,轉化思想,變換思想。
有了數(shù)學思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數(shù)學題時,也要注意解題思維策略問題,經常要思考:選擇什么角度來進入,應遵循什么原則性的東西。高中數(shù)學中經常用到的數(shù)學思維策略有:以簡馭繁、數(shù)形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。
3、逐步形成 “以我為主”的學習模式 數(shù)學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數(shù)學就要積極主動地參與學習過程,養(yǎng)成實事求是的科學態(tài)度,獨立思考、勇于探索的創(chuàng)新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養(yǎng)成積極進取,不屈不撓,耐挫折的優(yōu)良心理品質;在學習過程中,要遵循認識規(guī)律,善于開動腦筋,積極主動去發(fā)現(xiàn)問題,注重新舊知識間的內在聯(lián)系,不滿足于現(xiàn)成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。
學習數(shù)學一定要講究“活”,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鉆進去,又要能跳出來,結合自身特點,尋找最佳學習方法。
4、針對自己的學習情況,采取一些具體的措施 (1)記數(shù)學筆記,特別是對概念理解的不同側面和數(shù)學規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
(2)建立數(shù)學糾錯本。把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。
爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。
(3)熟記一些數(shù)學規(guī)律和數(shù)學小結論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。 (4)經常對知識結構進行梳理,形成板塊結構,實行“整體集裝”,如表格化,使知識結構一目了然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統(tǒng)一;使幾類問題歸納于同一知識方法。
(5)閱讀數(shù)學課外書籍與報刊,參加數(shù)學學科課外活動與講座,多做數(shù)學課外題,加大自學力度,拓展自己的知識面。 (6)及時復習,強化對基本概念知識體系的理解與記憶,進行適當?shù)姆磸挽柟?,消滅前學后忘。
(7)學會從多角度、多層次地進行總結歸類。如:①從數(shù)學思想分類②從解題方法歸類③從知識應用上分類等,使所學的知識系統(tǒng)化、條理化、專題化、網絡化。
(8)經常在做題后進行一定的“反思”,思考一下本題所用的基礎知識,數(shù)學思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。 (9)無論是作業(yè)還是測驗,都應把準確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學好數(shù)學的重要問題。
解題方面 數(shù)學是應用性很強的學科,學習數(shù)學就是學習解題。搞題海戰(zhàn)術的方式、方法固然是不對的,但離開解題來學習數(shù)學同樣也是錯誤的。
其中的關鍵在于對待題目的態(tài)度和處理解題的方式上。 ——首先是精選題目,做到少而精 只有解決質量高的、有代表性的題目才能達到事半功倍的效果。
然而絕大多數(shù)的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。 ——其次是分析題目 解答任何一個數(shù)學題目之前,都要先進行分析。
相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學問題實際上就是在題目的已知條件和待求結論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。
當然在這個過程中也反映出對數(shù)學基礎知識掌握的熟練程度、理解程度和數(shù)學方法的靈活應用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結構形式統(tǒng)一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關鍵。
——最后,題目總結 解題不是目的,我們是通過解題來檢驗我們的學習效果,發(fā)現(xiàn)學習中的不足的,以便改進和提高。因此,解題后的總結至關重要,這正是我們學習的大好機會。
對于一道完成的題目,有以下幾個方面需要總結: ①在知識方面,題目中涉及哪些概念、定理、公式等基。
數(shù)學的解題方法是隨著對數(shù)學對象的研究的深入而發(fā)展起來的。
教師鉆研習題、精通解題方法,可以促進教師進一步熟練地掌握中學數(shù)學教材,練好解題的基本功,提高解題技巧,積累教學資料,提高業(yè)務水平和教學能力。 下面介紹的解題方法,都是初中數(shù)學中最常用的,有些方法也是中學教學大綱要求掌握的。
1、配方法 所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學問題的方法叫配方法。
其中,用的最多的是配成完全平方式。配方法是數(shù)學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經常用到它。
2、因式分解法 因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。
因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。 3、換元法 換元法是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。
我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。 4、判別式法與韋達定理 一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。 5、待定系數(shù)法 在解數(shù)學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設條件列出關于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。
它是中學數(shù)學中常用的方法之一。 6、構造法 在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構造法。
運用構造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。 7、反證法 反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。
反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(?。┯?不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。 歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。
推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法 平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結果。
所以用面積法來解幾何題,幾何元素之間關系變成數(shù)量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。 9、幾何變換法 在數(shù)學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。
所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數(shù)學中所涉及的變換主要是初等變換。
有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。
將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。 幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10.客觀性題的解題方法 選擇題是給出條件和結論,要求根據(jù)一定的關系找出正確答案的一類題型。選擇題的題。
明確目標,扎實推導,記憶的要領——“不理解,無記憶”
1.記憶的目的是為了應用
人腦不應該去和電腦比拼記憶力。我們記憶的目的不是為了挑戰(zhàn)自己的記憶力,而是為了在中高考中幫助我們解題,或者用來解決別的實際問題。有意義的東西才去記,沒意義的東西就不要記。
不要迷信一些花里胡哨的記憶訣竅。比如,不管是用“諧音法”還是“圖形法”還是別的什么方法來強行記憶圓周率后的幾十位數(shù)字,這些東西都是沒有意義的。有這個工夫,不如多解幾道數(shù)學題,對提高數(shù)學成績更有幫助。
2. 根據(jù)知識的用途來決定記憶的重點
并不是所有需要記憶的東西都要記得一清二楚才算“記住了”。只要得到了我們背一個東西所希望得到的收獲,就算“記住了”。
數(shù)學、物理、化學等理科公式的記憶,目的是為了計算解題,所以重點在于知道它的來龍去脈,用起來才靈活;語文的詩詞和文段,重點在于理解它的構架和文筆,寫作的時候才能借鑒,至于個別字詞記憶有點小差錯,其實沒什么關系;歷史政治知識的記憶,重點在于記住歷史事件的脈絡和政治理論的邏輯結構,在分析問題回答問題的時候能夠用得上,至于具體的表述,不需要記得一字不差;英語文章的背誦,重點在于加深對單詞、語法和句型的理解,背完之后把文章忘了都沒關系,記住文中有用的語法和句子結構就行。
3. 只有真正理解的東西才能記得牢
記憶=90% 的理解+10% 的背誦?;ㄔ诶斫馍系臅r間一定要比背誦的時間多,這樣學習才有效率。沒有建立在理解基礎上的死記硬背,只會有兩種結果:第一,記得慢,忘得快;第二,記得快,忘得更快。
如果有一些知識記起來很痛苦,或者不斷地背又不斷地忘。首先要懷疑的不是自己的智商,而是自己對這些知識有沒有徹底理解。
4. 徹底理解是指明白過程而不是記住結果
在某一塊知識的內部,如果你知道它里邊最簡單的概念與最復雜的內容之間的聯(lián)系,那么你對這一塊知識,就算徹底理解了。它強調的是過程,而不是結果。
在復習解析幾何的時候,你可以先問自己:“解析幾何最簡單的概念是什么?”然后問自己:“解析幾何里面哪些地方我覺得最難,最搞不清楚?”然后,你試著用各種方法讓自己搞清楚怎么從這些最簡單的概念一步一步推出最難最復雜的知識點。只要你把這個過程搞清楚了,那么,這些難點對你而言,就可以算是徹底理解了。這個方法,對任何一種有規(guī)律的知識,都是有用的。
5. 把握知識的規(guī)律可以讓記憶事半功倍
在徹底理解的基礎上,把握知識的規(guī)律,可以讓我們的記憶事半功倍。尋找規(guī)律的方法,將通過一系列的例子詳細講解。
聲明:本網站尊重并保護知識產權,根據(jù)《信息網絡傳播權保護條例》,如果我們轉載的作品侵犯了您的權利,請在一個月內通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學習鳥. 頁面生成時間:4.096秒