初中數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)總匯 一、數(shù)與代數(shù)A:數(shù)與式: 1:有理數(shù) 有理數(shù):①整數(shù)→正整數(shù)/0/負(fù)整數(shù) ②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù) 數(shù)軸:①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸 ②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。 在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。
④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。 ②正數(shù)的絕對(duì)值是他本身/負(fù)數(shù)的絕對(duì)值是他的相反數(shù)/0的絕對(duì)值是0. 兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:加法:①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。 ②異號(hào)相加,絕對(duì)值相等時(shí)和為0; 絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
③一個(gè)數(shù)與0相加不變。 減法: 減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。 ②任何數(shù)與0相乘得0。
③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。 除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。
②0不能作除數(shù)。 乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。 2:實(shí)數(shù) 無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù) 平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。
②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。 ③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒(méi)有平方根。
④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。 立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)/0的立方根是0/負(fù)數(shù)的立方根是負(fù)數(shù)。 ③求一個(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。
實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。 ②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。
③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。 3:代數(shù)式 代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。 ②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。
③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。 4:整式與分式 整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。 冪的運(yùn)算: 整式的乘法:①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
公式兩條:平方差公式/完全平方公式 整式的除法:①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式 方法:提公因式法/運(yùn)用公式法/分組分解法/十字相乘法 分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
分式的運(yùn)算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。 除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。
加減法:①同分母的分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B:方程與不等式 1:方程與方程組 一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。 二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。 適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。 解二元一次。
去百度文庫(kù),查看完整內(nèi)容>
內(nèi)容來(lái)自用戶:扭擺的青春
第一章數(shù)與式
考點(diǎn)一、概念及分類1、實(shí)數(shù)按定義分類正整數(shù)
整數(shù)零
有理數(shù)負(fù)整數(shù)實(shí)數(shù)正分?jǐn)?shù)
分?jǐn)?shù)有限小數(shù)和無(wú)限循環(huán)小數(shù)
負(fù)分?jǐn)?shù)
正無(wú)理數(shù)
無(wú)理數(shù)無(wú)限不循環(huán)小數(shù)
負(fù)無(wú)理數(shù)
2、實(shí)數(shù)按正負(fù)分類
正整數(shù)
正有理數(shù)
正實(shí)數(shù)正分?jǐn)?shù)
正無(wú)理數(shù)
實(shí)數(shù)零負(fù)整數(shù)
負(fù)有理數(shù)
負(fù)分?jǐn)?shù)
負(fù)實(shí)數(shù)
負(fù)無(wú)理數(shù)
在理解無(wú)理數(shù)時(shí),要抓住“無(wú)限不循環(huán)”這一本質(zhì),歸納起來(lái)有四類:
(1)開方開不盡的數(shù),如等;
(2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如+8等;
(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等,一定要注意后面要帶省略號(hào);
(4)某些三角函數(shù),如sin60o等
考點(diǎn)二、數(shù)軸、倒數(shù)、相反數(shù)、絕對(duì)值1、數(shù)軸定義:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸。對(duì)應(yīng):實(shí)數(shù)和數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的關(guān)系。2、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒(méi)有倒數(shù)。a的倒數(shù)為。3、相反數(shù):如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。相反數(shù)等于本身的數(shù)是0,任何數(shù)都有相反數(shù)。a的相反數(shù)為-a。
4、絕對(duì)值
一個(gè)數(shù)的絕對(duì)值就是表示這個(gè)數(shù)的點(diǎn)與原點(diǎn)的距離,|a|≥0。零的絕對(duì)值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a(4.考點(diǎn)三、因式分解(1((考點(diǎn)一、平面直角坐標(biāo)系點(diǎn)(3如果自變量的取值范圍是反過(guò)來(lái),解一元二次方程(1一條線段可用它的端點(diǎn)的兩個(gè)大寫字母
初中數(shù)學(xué)初中必背公式與定理 1 過(guò)兩點(diǎn)有且只有一條直線 2 兩點(diǎn)之間線段最短 3 同角或等角的補(bǔ)角相等 4 同角或等角的余角相等 5 過(guò)一點(diǎn)有且只有一條直線和已知直線垂直 6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯(cuò)角相等,兩直線平行 11 同旁內(nèi)角互補(bǔ),兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯(cuò)角相等 14 兩直線平行,同旁內(nèi)角互補(bǔ) 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180° 18 推論1 直角三角形的兩個(gè)銳角互余 19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35 推論1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42 定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形 43 定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線 44定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上 45逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形 48定理 四邊形的內(nèi)角和等于360° 49四邊形的外角和等于360° 50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)*180° 51推論 任意多邊的外角和等于360° 52平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分 56平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角 61矩形性質(zhì)定理2 矩形的對(duì)角線相等 62矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63矩形判定定理2 對(duì)角線相等的平行四邊形是矩形 64菱形性質(zhì)定理1 菱形的四條邊都相等 65菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角 66菱形面積=對(duì)角線乘積的一半,即S=(a*b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形 69正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角 71定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的 72定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分 73逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一 點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75等腰梯形的兩條對(duì)角線相等 76等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形 77對(duì)角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那么在其他直線上截得的線段也相等 79 推論1 經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80 推論2 經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的。
初中數(shù)學(xué)知識(shí)點(diǎn)初中數(shù)學(xué)知識(shí)點(diǎn)集一、數(shù)與式(一)有理數(shù)1、有理數(shù)的分類2、數(shù)軸的定義與應(yīng)用3、相反數(shù)4、倒數(shù)5、絕對(duì)值6、有理數(shù)的大小比較7、有理數(shù)的運(yùn)算(二)實(shí)數(shù)8、實(shí)數(shù)的分類9、實(shí)數(shù)的運(yùn)算10、科學(xué)記數(shù)法11、近似數(shù)與有效數(shù)字12、平方根與算術(shù)根和立方根13、非負(fù)數(shù)14、零指數(shù)次冪、負(fù)指數(shù)次冪(三)代數(shù)式15、代數(shù)式、代數(shù)式的值16、列代數(shù)式(四)整式17、整式的分類18、整式的加減、乘除的運(yùn)算19、冪的有關(guān)運(yùn)算性質(zhì)20、乘法公式21、因式分解(五)分式22、分式的定義23、分式的基本性質(zhì)24、分式的運(yùn)算(六)二次根式25、二次根式的意義26、根式的基本性質(zhì)27、根式的運(yùn)算二、方程和不等式(一)一元一次方程28、方程、方程的解的有關(guān)定義29、一元一次的定義30、一元一次方程的解法31、列方程解應(yīng)用題的一般步驟(二)二元一次方程32、二元一次方程的定義33、二元一次方程組的定義34、二元一次方程組的解法(代入法消元法、加減消元法)35、二元一次方程組的應(yīng)用(三)一元二次方程36、一元二次方程的定義37、一元二次方程的解法(配方法、因式分解法、公式法、十字相乘法)38、一元二次方程根與系數(shù)的關(guān)系和根的判別式39、一元二次方程的應(yīng)用(四)分式方程40、分式方程的定義41、分式方程的解法(轉(zhuǎn)化為整式方程、檢驗(yàn))42、分式方程的增根的定義43、分式方程的應(yīng)用(五)不等式和不等式組44、不等式(組)的有關(guān)定義45、不等式的基本性質(zhì)46、一元一次不等式的解法47、一元一次不等式組的解法48、一元一次不等式(組)的應(yīng)用三、函數(shù)(一)位置的確定與平面直角坐標(biāo)系49、位置的確定50、坐標(biāo)變換51、平面直角坐標(biāo)系內(nèi)點(diǎn)的特征52、平面直角坐標(biāo)系內(nèi)點(diǎn)坐標(biāo)的符號(hào)與點(diǎn)的象限位置53、對(duì)稱問(wèn)題:P(x,y)→Q(x,- y)關(guān)于x軸對(duì)稱 P(x,y)→Q(- x,y)關(guān)于y軸對(duì)稱 P(x,y)→Q(- x,- y)關(guān)于原點(diǎn)對(duì)稱54、變量、自變量、因變量、函數(shù)的定義55、函數(shù)自變量、因變量的取值范圍(使式子有意義的條件、圖象法)56、函數(shù)的圖象:變量的變化趨勢(shì)描述(二)一次函數(shù)與正比例函數(shù)57、一次函數(shù)的定義與正比例函數(shù)的定義58、一次函數(shù)的圖象:直線,畫法59、一次函數(shù)的性質(zhì)(增減性)60、一次函數(shù)y=kx+b(k≠0)中k、b符號(hào)與圖象位置61、待定系數(shù)法求一次函數(shù)的解析式(一設(shè)二列三解四回)62、一次函數(shù)的平移問(wèn)題63、一次函數(shù)與一元一次方程、一元一次不等式、二元一次方程的關(guān)系(圖象法)64、一次函數(shù)的實(shí)際應(yīng)用65、一次函數(shù)的綜合應(yīng)用(1)一次函數(shù)與方程綜合(2)一次函數(shù)與其它函數(shù)綜合(3)一次函數(shù)與不等式的綜合(4)一次函數(shù)與幾何綜合(三)反比例函數(shù)66、反比例函數(shù)的定義67、反比例函數(shù)解析式的確定68、反比例函數(shù)的圖象:雙曲線69、反比例函數(shù)的性質(zhì)(增減性質(zhì))70、反比例函數(shù)的實(shí)際應(yīng)用71、反比例函數(shù)的綜合應(yīng)用(四個(gè)方面、面積問(wèn)題)(四)二次函數(shù)72、二次函數(shù)的定義73、二次函數(shù)的三種表達(dá)式(一般式、頂點(diǎn)式、交點(diǎn)式)74、二次函數(shù)解析式的確定(待定系數(shù)法)75、二次函數(shù)的圖象:拋物線、畫法(五點(diǎn)法)76、二次函數(shù)的性質(zhì)(增減性的描述以對(duì)稱軸為分界)77、二次函數(shù)y=ax2+bx+c(a≠0)中a、b、c、△與特殊式子的符號(hào)與圖象位置關(guān)系78、求二次函數(shù)的頂點(diǎn)坐標(biāo)、對(duì)稱軸、最值79、二次函數(shù)的交點(diǎn)問(wèn)題80、二次函數(shù)的對(duì)稱問(wèn)題81、二次函數(shù)的最值問(wèn)題(實(shí)際應(yīng)用)82、二次函數(shù)的平移問(wèn)題83、二次函數(shù)的實(shí)際應(yīng)用84、二次函數(shù)的綜合應(yīng)用(1)二次函數(shù)與方程綜合(2)二次函數(shù)與其它函數(shù)綜合(3)二次函數(shù)與不等式的綜合(4)二次函數(shù)與幾何綜合1,過(guò)兩點(diǎn)有且只有一條直線 2,兩點(diǎn)之間線段最短 3,同角或等角的補(bǔ)角相等 4,同角或等角的余角相等 5,過(guò)一點(diǎn)有且只有一條直線和已知直線垂直 6,直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7,經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行 8,如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9,同位角相等,兩直線平行 10,內(nèi)錯(cuò)角相等,兩直線平行 11,同旁內(nèi)角互補(bǔ) 兩直線行 12,兩直線平行,同位角相等 13,兩直線平行,內(nèi)錯(cuò)角相等 14,兩直線平行,同旁內(nèi)角互補(bǔ) 15,三角形兩邊的和大于第三邊 16,三角形兩邊的差小于第三邊 17,三角形三個(gè)內(nèi)角的和等180° 18,直角三角形的兩個(gè)銳角互余 19,三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20,三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21,全等三角形的對(duì)應(yīng)邊,對(duì)應(yīng)角相等 22,有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 (SAS)23 有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(ASA) 24,有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(AAS) 25,有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 (SSS)26,有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(HL) 27,在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等28,到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29,角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30,等腰三角形的性質(zhì)定理 等腰三角形。
七年級(jí)到九年級(jí)數(shù)學(xué)必記重要知識(shí)點(diǎn) 1、過(guò)兩點(diǎn)有且只有一條直線 2、兩點(diǎn)之間線段最短 3、同角或等角的補(bǔ)角相等 4、同角或等角的余角相等 5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直 6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7、平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行 8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9、同位角相等,兩直線平行 10、內(nèi)錯(cuò)角相等,兩直線平行 11、同旁內(nèi)角互補(bǔ),兩直線平行 12、兩直線平行,同位角相等 13、兩直線平行,內(nèi)錯(cuò)角相等 14、兩直線平行,同旁內(nèi)角互補(bǔ) 15、定理 三角形兩邊的和大于第三邊 16、推論 三角形兩邊的差小于第三邊 17、三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180° 18、推論1 直角三角形的兩個(gè)銳角互余 19、推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20、推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22、邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23、角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的 兩個(gè)三角形全等 24、推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25、邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27、定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28、定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30、等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角) 31、推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33、推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34、等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35、推論1 三個(gè)角都相等的三角形是等邊三角形 36、推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形 37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半 38、直角三角形斜邊上的中線等于斜邊上的一半 39、定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40、逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上 41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42、定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形 43、定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線 44、定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上 45、逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱 46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2 47、勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形 48、定理 四邊形的內(nèi)角和等于360° 49、四邊形的外角和等于360° 50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)*180° 51、推論 任意多邊的外角和等于360° 52、平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等 53、平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等 54、推論 夾在兩條平行線間的平行線段相等 55、平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分 56、平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形 57、平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊 形是平行四邊形 58、平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形 59、平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形 60、矩形性質(zhì)定理1 矩形的四個(gè)角都是直角 61、矩形性質(zhì)定理2 矩形的對(duì)角線相等 62、矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63、矩形判定定理2 對(duì)角線相等的平行四邊形是矩形 64、菱形性質(zhì)定理1 菱形的四條邊都相等 65、菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角 66、菱形面積=對(duì)角線乘積的一半,即S=(a*b)÷2 67、菱形判定定理1 四邊都相等的四邊形是菱形 68、菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形 69、正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等 70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角 71、定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的 72、定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分 73、逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱 74、等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75、等腰梯形的兩條對(duì)角線相等 76、等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯 形是等腰梯形 77、對(duì)角線相等的梯形是等腰梯形 78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相。
代數(shù)部分:有理數(shù)、無(wú)理數(shù)、實(shí)數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。
1、實(shí)數(shù)的分類有理數(shù):整數(shù)(包括:正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)(包括:有限小數(shù)和無(wú)限環(huán)循小數(shù))都是有理數(shù)。如:-3,,0.231,0.737373。
無(wú)理數(shù):無(wú)限不環(huán)循小數(shù)叫做無(wú)理數(shù)如:π,-,0.1010010001。(兩個(gè)1之間依次多1個(gè)0)。
實(shí)數(shù):有理數(shù)和無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù)。 2、無(wú)理數(shù)在理解無(wú)理數(shù)時(shí),要抓住"無(wú)限不循環(huán)"這一時(shí)之,它包含兩層意思:一是無(wú)限小數(shù);二是不循環(huán).二者缺一不可.歸納起來(lái)有四類:(1)開方開不盡的數(shù),如等;(2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如+8等;(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001。
等;(4)某些三角函數(shù),如sin60o等。注意:判斷一個(gè)實(shí)數(shù)的屬性(如有理數(shù)、無(wú)理數(shù)),應(yīng)遵循:一化簡(jiǎn),二辨析,三判斷.要注意:"神似"或"形似"都不能作為判斷的標(biāo)準(zhǔn).3、非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。
(表為:x≥0)常見(jiàn)的非負(fù)數(shù)有: 性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。4、數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。
解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸("三要素")。
②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。
作用:A.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。5、相反數(shù)實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱, 如果a與b互為相反數(shù), 則有a+b=0,a=-b,反之亦成立。
即:(1)實(shí)數(shù)的相反數(shù)是。(2)和互為相反數(shù)。
擴(kuò)展資料:科學(xué)記數(shù)法把一個(gè)數(shù)寫做的形式,其中,n是整數(shù),這種記數(shù)法叫做科學(xué)記數(shù)法。(1)確定:是只有一位整數(shù)數(shù)位的數(shù)。
(2)確定n:當(dāng)原數(shù)≥1時(shí),等于原數(shù)的整數(shù)位數(shù)減1;;當(dāng)原數(shù)<1時(shí),是負(fù)整數(shù),它的絕對(duì)值等于原數(shù)中左起第一個(gè)非零數(shù)字前零的個(gè)數(shù)(含整數(shù)位上的零)。例如:-40700=-4.07*105,0.000043=4.3*10ˉ5。
(3)近似值的精確度:一般地,一個(gè)近似數(shù),四舍五入到哪一位,就說(shuō)這個(gè)近似數(shù)精確到哪一位(4)按精確度或有效數(shù)字取近似值,一定要與科學(xué)計(jì)數(shù)法有機(jī)結(jié)合起來(lái)。
初中數(shù)學(xué)總復(fù)習(xí)知識(shí)點(diǎn)
1.數(shù)的分類及概念:整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)(有限小數(shù)和無(wú)限循環(huán)小數(shù)),像√3,π,0.101001???叫無(wú)理數(shù);有理數(shù)和無(wú)理數(shù)統(tǒng)稱實(shí)數(shù)。實(shí)數(shù)按正負(fù)也可分為:正整數(shù)、正分?jǐn)?shù)、0、負(fù)整數(shù)、負(fù)分?jǐn)?shù),正無(wú)理數(shù)、負(fù)無(wú)理數(shù)。
2.自然數(shù)(0和正整數(shù));奇數(shù)2n-1、偶數(shù)2n、質(zhì)數(shù)、合數(shù)??茖W(xué)記數(shù)法:(1≤a3.(1)倒數(shù)積為1;(2)相反數(shù)和為0,商為-1;(3)絕對(duì)值是距離,非負(fù)數(shù)。
4.數(shù)軸:①定義(“三要素”);②點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。 (2)性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。
5非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)(1)常見(jiàn)的非負(fù)數(shù)有:
6.去絕對(duì)值法則:正數(shù)的絕對(duì)值是它本身,“+( )”;零的絕對(duì)值是零,“0”; 負(fù)數(shù)的絕對(duì)值是它的相反數(shù),“-( )”。
7.實(shí)數(shù)的運(yùn)算:加、減、乘、除、乘方、開方;運(yùn)算法則,定律,順序要熟悉。
8.代數(shù)式,單項(xiàng)式,多項(xiàng)式。整式,分式。有理式,無(wú)理式。根式。
9. 同類項(xiàng)。合并同類項(xiàng)(系數(shù)相加,字母及字母的指數(shù)不變)。
10. 算術(shù)平方根: (正數(shù)a的正的平方根); 平方根:
11. (1)最簡(jiǎn)二次根式:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式;
(2)同類二次根式:化為最簡(jiǎn)二次根式以后,被開方數(shù)相同的二次根式;(3)分母有理化:化去分母中的根號(hào)。
12.因式分解方法:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法。
聲明:本網(wǎng)站尊重并保護(hù)知識(shí)產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護(hù)條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請(qǐng)?jiān)谝粋€(gè)月內(nèi)通知我們,我們會(huì)及時(shí)刪除。
蜀ICP備2020033479號(hào)-4 Copyright ? 2016 學(xué)習(xí)鳥. 頁(yè)面生成時(shí)間:2.606秒