初中數(shù)學的基礎知識高中數(shù)學都需要。
初中數(shù)學內(nèi)容: 代數(shù)部分: 1、有理數(shù)、無理數(shù)、實數(shù)。 2、整式、分式、二次根式。
3、一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式。 4、函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))。
5、統(tǒng)計初步。 幾何部分: 1、線段、角。
2、相交線、平行線。 3、三角形。
4、四邊形。 5、相似形。
6、圓。 高中數(shù)學是全國高中生學習的一門學科。
包括《集合與函數(shù)》《三角函數(shù)》《不等式》《數(shù)列》《復數(shù)》《排列、組合、二項式定理》《立體幾何》《平面解析幾何》等部分。 高中數(shù)學知識框架: 在必修一里面主要學習了集合,包含集合的含義與表示,集合的基本關系,集合的基本運算;在剩下的幾個章節(jié)則學習了幾個重要的基本初等函數(shù) 在必修二里面則是學習了立體幾何初步:包含簡單幾何體與簡單多面體的三視圖,空間圖形的位置關系。
部分規(guī)則空間幾何體的體積與表面積,第二章以數(shù)形結合的形式向大家介紹了圓和直線的性質(zhì),理科生則深入學習了空間直角坐標系 在必修三部分是對簡單的概率論與數(shù)理統(tǒng)計進行了學習。和算法初步進行了學習。
必修四開端又學習了另一種基本初等函數(shù)--三角函數(shù),在高中階段主要是學習了,正弦,余弦,正切三個三角函數(shù)的性質(zhì)與圖像及三者之間的關系。包括三角函數(shù)限,弧度制,誘導公式等。
第二章則是學習了平面向量這一數(shù)學工具,這一章學習了向量的表示,向量的模和單位化,數(shù)量積和簡單應用。在第三章又深入學習了三角函數(shù)的半角公式,和角,差角公式,2倍角公式。
在進一步延伸后又學習了降冪公式。 必修五第一章主要講了等差與等比數(shù)列的性質(zhì),通項公式與前N項和的運算,第二章屬平面解析幾何的內(nèi)容,主要介紹了正弦,余弦定理,第三章主要學習了不等式的性質(zhì)與概念與LP問題初步(圖解法)。
選修2-1第一章是常用邏輯用語,主要講述了充分條件,必要條件和“或,且,非”等邏輯量詞,在第二章節(jié)是又進一步講述了空間解析幾何與向量代數(shù),理科生又多學習了二面角定理。第三章則是介紹了圓錐曲線有關知識,包括橢圓,雙曲線,拋物線的定義性質(zhì),圖像等。
選修2—2:第一章是推理與證明:介紹了歸納推理與類比推理,綜合法,分析法,反證法,和歸納法。第二章和第三章則是導數(shù)的有關性質(zhì)與運用。
第四章介紹了簡單的微積分性質(zhì)與運用(曲邊梯形面積和與簡單幾何體體積);第五章介紹了數(shù)系的擴充。主要介紹了復數(shù)的表示,性質(zhì),運算等 選修2-3:主要為理科生學習,第一章為排列與組合,主要學習了科學技術原理,排列,組合和二項式定理。
第二章則介紹了二項分布,正態(tài)分布等常見的概率分布,第三章則是介紹了獨立性檢驗與簡單的線性回歸分析。
高中數(shù)學復習資料主要有:《五年高考三年模擬》、《高考復習講義》《教與學》、《優(yōu)化設計》、《教材全解》等幾種復習資料。
高中數(shù)學復習最重要的就是必修一(函數(shù)),特別是在高一必修1-4全部學完后,最好把函數(shù)再重新學一下,這個決定了高二的學習數(shù)學方法和技巧,以及進入高三,數(shù)學能力的高低。而函數(shù),要注重性質(zhì):定義域、值域,、單調(diào)性、奇偶性、周期性、函數(shù)圖象。
要反復練習這幾個函數(shù):一次函數(shù),二次函數(shù)(重中之重),指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù),對勾函數(shù)。有一些數(shù)學可能會涉及比較技巧性的寫法,如果基礎比較好的話,那當然好,能夠節(jié)省考場時間。
但是如果基礎不是很好同學,也不要鉆得太深,因為考試的時候,時間本身就比較緊張,如果花在難題上太長的時間,導致一些基礎的解法不能順利地解答的話,那就非常不明智了。在做數(shù)學的時候,有一個題目取舍的問題,一般來說壓軸題——最后一題的第三小題,會是比較難的,但是第一小題、第二小題以及后面的題目都比較簡單,如果真正解不出這些題的時候,在寫題的時候,最好可以回過頭來看看前面的基礎題,看有沒有措辭的地方,需要檢查檢查。
因為即使把所有的題做出來了,也就4、5分,如果把后面的題做出來,一下可能就5分了,所以還是應該多關注一些基礎題。
高中數(shù)學重點知識與結論分類解析一、集合與簡易邏輯1.集合的元素具有確定性、無序性和互異性.2.對集合 , 時,必須注意到“極端”情況: 或 ;求集合的子集時是否注意到 是任何集合的子集、是任何非空集合的真子集.3.對于含有 個元素的有限集合 ,其子集、真子集、非空子集、非空真子集的個數(shù)依次為 4.“交的補等于補的并,即 ”;“并的補等于補的交,即 ”.5.判斷命題的真假 關鍵是“抓住關聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”.6.“或命題”的真假特點是“一真即真,要假全假”;“且命題”的真假特點是“一假即假,要真全真”;“非命題”的真假特點是“一真一假”.7.四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”.原命題等價于逆否命題,但原命題與逆命題、否命題都不等價.反證法分為三步:假設、推矛、得果.注意:命題的否定是“命題的非命題,也就是‘條件不變,僅否定結論’所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結論作為結論的所得命題” ?.8.充要條件二、函 數(shù)1.指數(shù)式、對數(shù)式,2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個集合 中的元素必有像,但第二個集合 中的元素不一定有原像( 中元素的像有且僅有下一個,但 中元素的原像可能沒有,也可任意個);函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集 的子集”.(2)函數(shù)圖像與 軸垂線至多一個公共點,但與 軸垂線的公共點可能沒有,也可任意個.(3)函數(shù)圖像一定是坐標系中的曲線,但坐標系中的曲線不一定能成為函數(shù)圖像.3.單調(diào)性和奇偶性(1)奇函數(shù)在關于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同.偶函數(shù)在關于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反.注意:(1)確定函數(shù)的奇偶性,務必先判定函數(shù)定義域是否關于原點對稱.確定函數(shù)奇偶性的常用方法有:定義法、圖像法等等.對于偶函數(shù)而言有: .(2)若奇函數(shù)定義域中有0,則必有 .即 的定義域時, 是 為奇函數(shù)的必要非充分條件.(3)確定函數(shù)的單調(diào)性或單調(diào)區(qū)間,在解答題中常用:定義法(取值、作差、鑒定)、導數(shù)法;在選擇、填空題中還有:數(shù)形結合法(圖像法)、特殊值法等等.(4)既奇又偶函數(shù)有無窮多個( ,定義域是關于原點對稱的任意一個數(shù)集).(7)復合函數(shù)的單調(diào)性特點是:“同性得增,增必同性;異性得減,減必異性”.復合函數(shù)的奇偶性特點是:“內(nèi)偶則偶,內(nèi)奇同外”.復合函數(shù)要考慮定義域的變化。
(即復合有意義)4.對稱性與周期性(以下結論要消化吸收,不可強記)(1)函數(shù) 與函數(shù) 的圖像關于直線 ( 軸)對稱.推廣一:如果函數(shù) 對于一切 ,都有 成立,那么 的圖像關于直線 (由“ 和的一半 確定”)對稱.推廣二:函數(shù) , 的圖像關于直線 (由 確定)對稱.(2)函數(shù) 與函數(shù) 的圖像關于直線 ( 軸)對稱.(3)函數(shù) 與函數(shù) 的圖像關于坐標原點中心對稱.推廣:曲線 關于直線 的對稱曲線是 ;曲線 關于直線 的對稱曲線是 .(5)類比“三角函數(shù)圖像”得:若 圖像有兩條對稱軸 ,則 必是周期函數(shù),且一周期為 .如果 是R上的周期函數(shù),且一個周期為 ,那么 .特別:若 恒成立,則 .若 恒成立,則 .若 恒成立,則 .三、數(shù) 列1.數(shù)列的通項、數(shù)列項的項數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項與數(shù)列的前 項和公式的關系: (必要時請分類討論).注意: ; .2.等差數(shù)列 中:(1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性.(2) ; .(3) 、也成等差數(shù)列.(4)兩等差數(shù)列對應項和(差)組成的新數(shù)列仍成等差數(shù)列.(5) 仍成等差數(shù)列.(8)“首正”的遞等差數(shù)列中,前 項和的最大值是所有非負項之和;“首負”的遞增等差數(shù)列中,前 項和的最小值是所有非正項之和;(9)有限等差數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定.若總項數(shù)為偶數(shù),則“偶數(shù)項和”-“奇數(shù)項和”=總項數(shù)的一半與其公差的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和”-“偶數(shù)項和”=此數(shù)列的中項.(10)兩數(shù)的等差中項惟一存在.在遇到三數(shù)或四數(shù)成等差數(shù)列時,??紤]選用“中項關系”轉(zhuǎn)化求解.(11)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式).3.等比數(shù)列 中:(1)等比數(shù)列的符號特征(全正或全負或一正一負),等比數(shù)列的首項、公比與等比數(shù)列的單調(diào)性.(3) 、、成等比數(shù)列; 成等比數(shù)列 成等比數(shù)列.(4)兩等比數(shù)列對應項積(商)組成的新數(shù)列仍成等比數(shù)列.(8)“首大于1”的正值遞減等比數(shù)列中,前 項積的最大值是所有大于或等于1的項的積;“首小于1”的正值遞增等比數(shù)列中,前 項積的最小值是所有小于或等于1的項的積;(9)有限等比數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定.若總項數(shù)為偶數(shù),則“偶數(shù)項和”=“奇數(shù)項和”與“公比”的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和”=“首項”加上“公比”與“偶數(shù)項和”積的和.(10)并非任何兩數(shù)總有等比中項.僅當實數(shù) 同號時,實數(shù) 存在等比中項.對同號兩實數(shù) 的等比中項不僅存在,而且。
高考的重點一般在 常用函數(shù) 常用雙曲線+直線 數(shù)列 三角
二項式定理 立體幾何 排列組合加概率等其他一些知識是比較小的部分
重要的是基礎 高一的話上課的基本解題方法一定要熟練掌握 并且不能忘記 到了高三再練習就很麻煩了 還有不要忽視概念 往往很多題目是考概念的
難度方面要視文理科而定 但是70%題目肯定用基本知識就能做的 20%需要結合各種知識并且動腦 真正有難度的題目只有10%
如果數(shù)學是弱項就一定要重視知識的反復整理和練習 不一定要以制做題 而是要把做錯的題目和典型的題目反復練習 基本的方法和解題思路是很重要的
還有就是 不能放棄 數(shù)學學科要有明顯提高一定有一個過程 一般是半個學期到一個學期的時間 如果一旦放棄就功虧一簣了
高中數(shù)學主要是代數(shù),三角,幾何三個部分.內(nèi)容相互獨立但是解題時常互相提供方法,等高三你就知道了.
必修的:
代數(shù)部分有:
1 集合與簡易邏輯.其實就是集合,命題,充要條件三點,很淺顯高考也不會單出這類的題
2 函數(shù).先是對于函數(shù)的描述,有映射定義域?qū)▌t植域;然后是性質(zhì),三個,單調(diào)性奇偶性周期性;最后是指數(shù)函數(shù)還有對數(shù)函數(shù),是兩個基本的函數(shù),要研究他們的性質(zhì)和圖象
3 三角.三角其實就是個工具,比較煩人,公式背下來再多練練用的滾瓜爛熟就行了
4 幾何.也就是平面解析幾何,用坐標法定量的研究平面幾何問題.學幾個定義,然后是直線的方程,圓的方程,圓錐曲線方程.
哎對不起啊現(xiàn)在我也高三總復習了一說就隨口說了這么多,其實你不用知道那么多,三年呢自然而然就都學了.
現(xiàn)在建議你最好能對數(shù)學感興趣,自己暗示自己一下;上課認真聽講,把知識記牢,免得以后補很麻煩;學會總結,抓住知識之間的聯(lián)系
數(shù)學是必考科目之一,故從初一開始就要認真地學習數(shù)學。那么,怎樣才能學好數(shù)學呢?現(xiàn)介紹幾種方法以供參考:
一、課內(nèi)重視聽講,課后及時復習。
新知識的接受,數(shù)學能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內(nèi)的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網(wǎng)絡,納入自己的知識體系。
二、適當多做題,養(yǎng)成良好的解題習慣。
要想學好數(shù)學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關鍵時候,你所表現(xiàn)的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習慣是非常重要的。
三、調(diào)整心態(tài),正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
由此可見,要把數(shù)學學好就得找到適合自己的學習方法,了解數(shù)學學科的特點,使自己進入數(shù)學的廣闊天地中去。
剛才看錯了,我以為你語文基礎差。抱歉,數(shù)學可以買《教材完全解讀》或者《考點同步解讀》,這兩本比較經(jīng)典,你可以比較一下兩本,不要覺得基礎差就全做簡單的題目,那樣是不會有多大的提高的。有的章節(jié)《教材完全解讀》好,有的章節(jié)《考點》好,解三角形那章買《考點》,《解讀》不行。數(shù)列最好買一本《龍門專題》,里面補充了特征根的知識,用起來很方便。你想一下,高考難度是確定的,不會因你基礎差而降低難度,所以要想提高,難題目是必須得做的,要是實在不會就看解析,要是解析都看不懂,那就問老師,與老師建立好關系是十分有助于學習的。等到了高三高一高二的資料基本上用不著了,那時候買五三或者金考卷都行,十年高考也不錯,天利38套只建議買數(shù)學的,金考卷特快專遞很不錯的。
望采納!
大概各個省區(qū)不一樣吧 我們對海倫公式以及圓冪定理不作要求 一言難盡啊 你去到書店買一本高中數(shù)學公式吧 補充:1.集合、簡易邏輯 理解集合、子集、補集、交集、并集的概念; 了解空集和全集的意義; 了解屬于、包含、相等關系的意義; 掌握有關的術語和符號,并會用它們正確表示一些簡單的集合。
理解邏輯聯(lián)結詞"或"、"且"、"非"的含義; 理解四種命題及其相互關系;掌握充要條件的意義。 2.函數(shù) 了解映射的概念,在此基礎上加深對函數(shù)概念的理解。
了解函數(shù)的單調(diào)性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性的方法。 了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖象間的關系,會求一些簡單函數(shù)的反函數(shù)。
理解分數(shù)指數(shù)的概念,掌握有理指數(shù)冪的運算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì)。 理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì);掌握對數(shù)函數(shù)的概念、圖象和性質(zhì)。
能夠運用函數(shù)的性質(zhì)、指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì)解決某些簡單的實際問題。 3.不等式 理解不等式的性質(zhì)及其證明。
掌握兩個(不擴展到三個)正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)的定理,并會簡單的應用。 掌握分析法、綜合法、比較法證明簡單的不等式。
掌握二次不等式,簡單的絕對值不等式和簡單的分式不等式的解法。 理解不等式:|a|-|b|≤|a+b|≤|a|+|b|。
4.三角函數(shù)(46課時) 理解任意角的概念、弧度的意義,能正確地進行弧度與角度的換算。 掌握任意角的正弦、余弦、正切的定義, 并會利用單位圓中的三角函數(shù)線表示正弦、余弦和正切。
了解任意角的余切、正割、余割的定義; 掌握同角三角函數(shù)的基本關系式: 掌握正弦、余弦的誘導公式。 掌握兩角和與兩角差的正弦、余弦、正切公式; 掌握二倍角的正弦、余弦、正切公式;通過公式的推導,了解它們的內(nèi)在聯(lián)系,從而培養(yǎng)邏輯推理能力。
能正確運用三角公式,進行簡單三角函數(shù)式的化簡、求值和恒等式證明(包括引出積化和差、和差化積、半角公式,但不要求記憶)。 了解周期函數(shù)與最小正周期的意義; 了解奇偶函數(shù)的意義;并通過它們的圖象理解正弦函數(shù)、余弦函數(shù)、正切函數(shù)的性質(zhì);以及簡化這些函數(shù)圖象的繪制過程; 會用"五點法"畫正弦函數(shù)、余弦函數(shù)和函數(shù)y=Asin(ωx+φ)的簡圖,理解A、ω、φ的物理意義。
會由已知三角函數(shù)值求角,并會用符號 arcsin x、arccos x、arctan x表示。 掌握正弦定理、余弦定理,并能運用它們解斜三角形,能利用計算器解決解斜三角形的計算問題。
5.平面向量 理解向量的概念,掌握向量的幾何表示, 了解共線向量的概念。 掌握向量的加法與減法。
掌握實數(shù)與向量的積,理解兩個向量共線的充要條件。 了解平面向量的基本定理, 理解平面向量的坐標的概念, 掌握平面向量的坐標運算。
掌握平面向量的數(shù)量積及其幾何意義, 了解用平面向量的數(shù)量積可以處理有關長度、角度和垂直的問題,掌握向量垂直的條件。 掌握平面兩點間的距離公式, 掌握線段的定比分點和中點坐標公式,并且能熟練運用; 掌握平移公式。
6.數(shù)列 理解數(shù)列的概念, 了解數(shù)列通項公式的意義; 了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。 理解等差數(shù)列的概念, 掌握等差數(shù)列的通項公式與前 n 項和公式,并能解決簡單的實際問題。
理解等比數(shù)列的概念 掌握等比數(shù)列的通項公式與前 n 項和公式,并能解決簡單的實際問題。 7.直線和圓的方程 理解直線的傾斜角和斜率的概念, 掌握過兩點的直線的斜率公式, 掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程。
掌握兩條直線平行與垂直的條件, 掌握兩條直線所成的角和點到直線的距離公式; 能夠根據(jù)直線的方程判斷兩條直線的位置關系。 會用二元一次不等式表示平面區(qū)域。
了解簡單的線性規(guī)劃問題,了解線性規(guī)劃的意義,并會簡單應用。 掌握圓的標準方程和一般方程, 了解參數(shù)方程的概念,理解圓的參數(shù)方程。
8.圓錐曲線方程 掌握橢圓的定義、標準方程和橢圓的簡單幾何性質(zhì); 理解橢圓的參數(shù)方程。 掌握雙曲線的定義、標準方程和雙曲線的簡單幾何性質(zhì)。
掌握拋物線的定義、標準方程和拋物線的簡單幾何性質(zhì)。 9.直線、平面、簡單幾何體 掌握平面的基本性質(zhì),會用斜二測的畫法畫水平放置的平面圖形的直觀圖; 能夠畫出空間兩條直線、直線和平面的各種位置關系的圖形,能夠根據(jù)圖形想象它們的位置關系。
掌握兩條直線平行與垂直的判定定理和性質(zhì)定理; 掌握兩條直線所成的角和距離的概念(對于異面直線的距離,只要求會利用給出的公垂線計算距離)。 掌握直線和平面平行的判定定理和性質(zhì)定理; 掌握直線和平面垂直的判定定理和性質(zhì)定理; 掌握斜線在平面上的射影、直線和平面所成的角、直線和平面的距離的概念; 了解三垂線定理及其逆定理。
掌握兩個平面平行的判定定理和性質(zhì)定理; 掌握二面角、二面角的平面角、兩個平行平面間的距離的概念; 掌握兩個平面垂直的判定定理和性質(zhì)定理。 進一步熟悉反證法,會用反證法證明簡單的問題。
了解多面體的概念,了解凸多面體的概念。 了解棱柱的概念,掌握棱柱的性質(zhì),會畫直棱柱的直觀圖。
了解棱錐的概念,。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權,根據(jù)《信息網(wǎng)絡傳播權保護條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權利,請在一個月內(nèi)通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學習鳥. 頁面生成時間:3.106秒