數(shù)據(jù)分析是指用適當(dāng)?shù)慕y(tǒng)計(jì)分析方法對(duì)收集來的大量數(shù)據(jù)進(jìn)行分析,提取有用信息和形成結(jié)論而對(duì)數(shù)據(jù)加以詳細(xì)研究和概括總結(jié)的過程。
這一過程也是質(zhì)量管理體系的支持過程。在實(shí)用中,數(shù)據(jù)分析可幫助人們作出判斷,以便采取適當(dāng)行動(dòng)。
數(shù)據(jù)分析的數(shù)學(xué)基礎(chǔ)在20世紀(jì)早期就已確立,但直到計(jì)算機(jī)的出現(xiàn)才使得實(shí)際操作成為可能,并使得數(shù)據(jù)分析得以推廣。數(shù)據(jù)分析是數(shù)學(xué)與計(jì)算機(jī)科學(xué)相結(jié)合的產(chǎn)物。
在統(tǒng)計(jì)學(xué)領(lǐng)域,有些人將數(shù)據(jù)分析劃分為描述性統(tǒng)計(jì)分析、探索性數(shù)據(jù)分析以及驗(yàn)證性數(shù)據(jù)分析;其中,探索性數(shù)據(jù)分析側(cè)重于在數(shù)據(jù)之中發(fā)現(xiàn)新的特征,而驗(yàn)證性數(shù)據(jù)分析則側(cè)重于已有假設(shè)的證實(shí)或證偽。 探索性數(shù)據(jù)分析是指為了形成值得假設(shè)的檢驗(yàn)而對(duì)數(shù)據(jù)進(jìn)行分析的一種方法,是對(duì)傳統(tǒng)統(tǒng)計(jì)學(xué)假設(shè)檢驗(yàn)手段的補(bǔ)充。
該方法由美國著名統(tǒng)計(jì)學(xué)家約翰·圖基(John Tukey)命名。 定性數(shù)據(jù)分析又稱為“定性資料分析”、“定性研究”或者“質(zhì)性研究資料分析”,是指對(duì)諸如詞語、照片、觀察結(jié)果之類的非數(shù)值型數(shù)據(jù)(或者說資料)的分析。
具體方法 數(shù)據(jù)分析有極廣泛的應(yīng)用范圍。典型的數(shù)據(jù)分析可能包含以下三個(gè)步: 1、探索性數(shù)據(jù)分析:當(dāng)數(shù)據(jù)剛?cè)〉脮r(shí),可能雜亂無章,看不出規(guī)律,通過作圖、造表、用各種形式的方程擬合,計(jì)算某些特征量等手段探索規(guī)律性的可能形式,即往什么方向和用何種方式去尋找和揭示隱含在數(shù)據(jù)中的規(guī)律性。
2、模型選定分析,在探索性分析的基礎(chǔ)上提出一類或幾類可能的模型,然后通過進(jìn)一步的分析從中挑選一定的模型。 3、推斷分析:通常使用數(shù)理統(tǒng)計(jì)方法對(duì)所定模型或估計(jì)的可靠程度和精確程度作出推斷。
分析方法 1、列表法 將實(shí)驗(yàn)數(shù)據(jù)按一定規(guī)律用列表方式表達(dá)出來是記錄和處理實(shí)驗(yàn)數(shù)據(jù)最常用的方法。表格的設(shè)計(jì)要求對(duì)應(yīng)關(guān)系清楚、簡單明了、有利于發(fā)現(xiàn)相關(guān)量之間的物理關(guān)系;此外還要求在標(biāo)題欄中注明物理量名稱、符號(hào)、數(shù)量級(jí)和單位等;根據(jù)需要還可以列出除原始數(shù)據(jù)以外的計(jì)算欄目和統(tǒng)計(jì)欄目等。
最后還要求寫明表格名稱、主要測量儀器的型號(hào)、量程和準(zhǔn)確度等級(jí)、有關(guān)環(huán)境條件參數(shù)如溫度、濕度等。 2、作圖法 作圖法可以最醒目地表達(dá)物理量間的變化關(guān)系。
從圖線上還可以簡便求出實(shí)驗(yàn)需要的某些結(jié)果(如直線的斜率和截距值等),讀出沒有進(jìn)行觀測的對(duì)應(yīng)點(diǎn)(內(nèi)插法)或在一定條件下從圖線的延伸部分讀到測量范圍以外的對(duì)應(yīng)點(diǎn)(外推法)。此外,還可以把某些復(fù)雜的函數(shù)關(guān)系,通過一定的變換用直線圖表示出來。
例如半導(dǎo)體熱敏電阻的電阻與溫度關(guān)系為,取對(duì)數(shù)后得到,若用半對(duì)數(shù)坐標(biāo)紙,以lgR為縱軸,以1/T為橫軸畫圖,則為一條直線。 3、數(shù)據(jù)分析主要包含: 1. 簡單數(shù)學(xué)運(yùn)算(Simple Math) 2. 統(tǒng)計(jì)(Statistics) 3. 快速傅里葉變換(FFT) 4. 平滑和濾波(Smoothing and Filtering) 5.基線和峰值分析(Baseline and Peak Analysis) 數(shù)據(jù)來源 1、搜索引擎蜘蛛抓取數(shù)據(jù); 2、網(wǎng)站IP、PV等基本數(shù)據(jù); 3、網(wǎng)站的HTTP響應(yīng)時(shí)間數(shù)據(jù); 4、網(wǎng)站流量來源數(shù)據(jù)。
數(shù)據(jù)分析過程的主要活動(dòng)由識(shí)別信息需求、收集數(shù)據(jù)、分析數(shù)據(jù)、評(píng)價(jià)并改進(jìn)數(shù)據(jù)分析的有效性組成。 識(shí)別需求 識(shí)別信息需求是確保數(shù)據(jù)分析過程有效性的首要條件,可以為收集數(shù)據(jù)、分析數(shù)據(jù)提供清晰的目標(biāo)。
識(shí)別信息需求是管理者的職責(zé)管理者應(yīng)根據(jù)決策和過程控制的需求,提出對(duì)信息的需求。就過程控制而言,管理者應(yīng)識(shí)別需求要利用那些信息支持評(píng)審過程輸入、過程輸出、資源配置的合理性、過程活動(dòng)的優(yōu)化方案和過程異常變異的發(fā)現(xiàn)。
收集數(shù)據(jù) 有目的的收集數(shù)據(jù),是確保數(shù)據(jù)分析過程有效的基礎(chǔ)。組織需要對(duì)收集數(shù)據(jù)的內(nèi)容、渠道、方法進(jìn)行策劃。
策劃時(shí)應(yīng)考慮: ①將識(shí)別的需求轉(zhuǎn)化為具體的要求,如評(píng)價(jià)供方時(shí),需要收集的數(shù)據(jù)可能包括其過程能力、測量系統(tǒng)不確定度等相關(guān)數(shù)據(jù); ②明確由誰在何時(shí)何處,通過何種渠道和方法收集數(shù)據(jù); ③記錄表應(yīng)便于使用; ④采取有效措施,防止數(shù)據(jù)丟失和虛假數(shù)據(jù)對(duì)系統(tǒng)的干擾。 分析數(shù)據(jù) 分析數(shù)據(jù)是將收集的數(shù)據(jù)通過加工、整理和分析、使其轉(zhuǎn)化為信息,通常用方法有: 老七種工具,即排列圖、因果圖、分層法、調(diào)查表、散步圖、直方圖、控制圖; 新七種工具,即關(guān)聯(lián)圖、系統(tǒng)圖、矩陣圖、KJ法、計(jì)劃評(píng)審技術(shù)、PDPC法、矩陣數(shù)據(jù)圖; 過程改進(jìn) 數(shù)據(jù)分析是質(zhì)量管理體系的基礎(chǔ)。
組織的管理者應(yīng)在適當(dāng)時(shí),通過對(duì)以下問題的分析,評(píng)估其有效性: ①提供決策的信息是否充分、可信,是否存在因信息不足、失準(zhǔn)、滯后而導(dǎo)致決策失誤的問題; ②信息對(duì)持續(xù)改進(jìn)質(zhì)量管理體系、過程、產(chǎn)品所發(fā)揮的作用是否與期望值一致,是否在產(chǎn)品實(shí)現(xiàn)過程中有效運(yùn)用數(shù)據(jù)分析; ③收集數(shù)據(jù)的目的是否明確,收集的數(shù)據(jù)是否真實(shí)和充分,信息渠道是否暢通; ④數(shù)據(jù)分析方法是否合理,是否將風(fēng)險(xiǎn)控制在可接受的范圍; ⑤數(shù)據(jù)分析所需資源是否得到保障。
一、描述性統(tǒng)計(jì)
描述性統(tǒng)計(jì)是一類統(tǒng)計(jì)方法的匯總,揭示了數(shù)據(jù)分布特性。它主要包括數(shù)據(jù)的頻數(shù)分析、數(shù)據(jù)的集中趨勢分析、數(shù)據(jù)離散程度分析、數(shù)據(jù)的分布以及一些基本的統(tǒng)計(jì)圖形。
1、缺失值填充:常用方法有剔除法、均值法、決策樹法。
2、正態(tài)性檢驗(yàn):很多統(tǒng)計(jì)方法都要求數(shù)值服從或近似服從正態(tài)分布,所以在做數(shù)據(jù)分析之前需要進(jìn)行正態(tài)性檢驗(yàn)。常用方法:非參數(shù)檢驗(yàn)的K-量檢驗(yàn)、P-P圖、Q-Q圖、W檢驗(yàn)、動(dòng)差法。
二、回歸分析
回歸分析是應(yīng)用極其廣泛的數(shù)據(jù)分析方法之一。它基于觀測數(shù)據(jù)建立變量間適當(dāng)?shù)囊蕾囮P(guān)系,以分析數(shù)據(jù)內(nèi)在規(guī)律。
1. 一元線性分析
只有一個(gè)自變量X與因變量Y有關(guān),X與Y都必須是連續(xù)型變量,因變量Y或其殘差必須服從正態(tài)分布。
2. 多元線性回歸分析
使用條件:分析多個(gè)自變量X與因變量Y的關(guān)系,X與Y都必須是連續(xù)型變量,因變量Y或其殘差必須服從正態(tài)分布。
3.Logistic回歸分析
線性回歸模型要求因變量是連續(xù)的正態(tài)分布變量,且自變量和因變量呈線性關(guān)系,而Logistic回歸模型對(duì)因變量的分布沒有要求,一般用于因變量是離散時(shí)的情況。
4. 其他回歸方法:非線性回歸、有序回歸、Probit回歸、加權(quán)回歸等。
三、方差分析
使用條件:各樣本須是相互獨(dú)立的隨機(jī)樣本;各樣本來自正態(tài)分布總體;各總體方差相等。
1. 單因素方差分析:一項(xiàng)試驗(yàn)只有一個(gè)影響因素,或者存在多個(gè)影響因素時(shí),只分析一個(gè)因素與響應(yīng)變量的關(guān)系。
2. 多因素有交互方差分析:一頊實(shí)驗(yàn)有多個(gè)影響因素,分析多個(gè)影響因素與響應(yīng)變量的關(guān)系,同時(shí)考慮多個(gè)影響因素之間的關(guān)系
3. 多因素?zé)o交互方差分析:分析多個(gè)影響因素與響應(yīng)變量的關(guān)系,但是影響因素之間沒有影響關(guān)系或忽略影響關(guān)系
4. 協(xié)方差分祈:傳統(tǒng)的方差分析存在明顯的弊端,無法控制分析中存在的某些隨機(jī)因素,降低了分析結(jié)果的準(zhǔn)確度。協(xié)方差分析主要是在排除了協(xié)變量的影響后再對(duì)修正后的主效應(yīng)進(jìn)行方差分析,是將線性回歸與方差分析結(jié)合起來的一種分析方法。
四、假設(shè)檢驗(yàn)
1. 參數(shù)檢驗(yàn)
參數(shù)檢驗(yàn)是在已知總體分布的條件下(一股要求總體服從正態(tài)分布)對(duì)一些主要的參數(shù)(如均值、百分?jǐn)?shù)、方差、相關(guān)系數(shù)等)進(jìn)行的檢驗(yàn) 。
2. 非參數(shù)檢驗(yàn)
非參數(shù)檢驗(yàn)則不考慮總體分布是否已知,常常也不是針對(duì)總體參數(shù),而是針對(duì)總體的某些一般性假設(shè)(如總體分布的位罝是否相同,總體分布是否正態(tài))進(jìn)行檢驗(yàn)。
適用情況:順序類型的數(shù)據(jù)資料,這類數(shù)據(jù)的分布形態(tài)一般是未知的。
1)雖然是連續(xù)數(shù)據(jù),但總體分布形態(tài)未知或者非正態(tài);
2)總體分布雖然正態(tài),數(shù)據(jù)也是連續(xù)類型,但樣本容量極小,如10以下;
主要方法包括:卡方檢驗(yàn)、秩和檢驗(yàn)、二項(xiàng)檢驗(yàn)、游程檢驗(yàn)、K-量檢驗(yàn)等。
一、掌握基礎(chǔ)、更新知識(shí)。
基本技術(shù)怎么強(qiáng)調(diào)都不過分。這里的術(shù)更多是(計(jì)算機(jī)、統(tǒng)計(jì)知識(shí)), 多年做數(shù)據(jù)分析、數(shù)據(jù)挖掘的經(jīng)歷來看、以及業(yè)界朋友的交流來看,這點(diǎn)大家深有感觸的。
數(shù)據(jù)庫查詢—SQL 數(shù)據(jù)分析師在計(jì)算機(jī)的層面的技能要求較低,主要是會(huì)SQL,因?yàn)檫@里解決一個(gè)數(shù)據(jù)提取的問題。有機(jī)會(huì)可以去逛逛一些專業(yè)的數(shù)據(jù)論壇,學(xué)習(xí)一些SQL技巧、新的函數(shù),對(duì)你工作效率的提高是很有幫助的。
統(tǒng)計(jì)知識(shí)與數(shù)據(jù)挖掘 你要掌握基礎(chǔ)的、成熟的數(shù)據(jù)建模方法、數(shù)據(jù)挖掘方法。例如:多元統(tǒng)計(jì):回歸分析、因子分析、離散等,數(shù)據(jù)挖掘中的:決策樹、聚類、關(guān)聯(lián)規(guī)則、神經(jīng)網(wǎng)絡(luò)等。
但是還是應(yīng)該關(guān)注一些博客、論壇中大家對(duì)于最新方法的介紹,或者是對(duì)老方法的新運(yùn)用,不斷更新自己知識(shí),才能跟上時(shí)代,也許你工作中根本不會(huì)用到,但是未來呢?行業(yè)知識(shí) 如果數(shù)據(jù)不結(jié)合具體的行業(yè)、業(yè)務(wù)知識(shí),數(shù)據(jù)就是一堆數(shù)字,不代表任何東西。是冷冰冰,是不會(huì)產(chǎn)生任何價(jià)值的,數(shù)據(jù)驅(qū)動(dòng)營銷、提高科學(xué)決策一切都是空的。
一名數(shù)據(jù)分析師,一定要對(duì)所在行業(yè)知識(shí)、業(yè)務(wù)知識(shí)有深入的了解。例如:看到某個(gè)數(shù)據(jù),你首先必須要知道,這個(gè)數(shù)據(jù)的統(tǒng)計(jì)口徑是什么?是如何取出來的?這個(gè)數(shù)據(jù)在這個(gè)行業(yè), 在相應(yīng)的業(yè)務(wù)是在哪個(gè)環(huán)節(jié)是產(chǎn)生的?數(shù)值的代表業(yè)務(wù)發(fā)生了什么(背景是什么)?對(duì)于A部門來說,本月新會(huì)員有10萬,10萬好還是不好呢?先問問上面的這個(gè)問題:對(duì)于A部門,1、新會(huì)員的統(tǒng)計(jì)口徑是什么。
第一次在使用A部門的產(chǎn)品的會(huì)員?還是在站在公司角度上說,第一次在公司發(fā)展業(yè)務(wù)接觸的會(huì)員?2、是如何統(tǒng)計(jì)出來的。A:時(shí)間;是通過創(chuàng)建時(shí)間,還是業(yè)務(wù)完成時(shí)間。
B:業(yè)務(wù)場景。是只要與業(yè)務(wù)發(fā)接觸,例如下了單,還是要業(yè)務(wù)完成后,到成功支付。
3、這個(gè)數(shù)據(jù)是在哪個(gè)環(huán)節(jié)統(tǒng)計(jì)出來。在注冊(cè)環(huán)節(jié),在下單環(huán)節(jié),在成功支付環(huán)節(jié)。
4、這個(gè)數(shù)據(jù)代表著什么。10萬高嗎?與歷史相同比較?是否做了營銷活動(dòng)?這個(gè)行業(yè)處理行業(yè)生命同期哪個(gè)階段?在前面二點(diǎn),更多要求你能按業(yè)務(wù)邏輯,來進(jìn)行數(shù)據(jù)的提?。ǜ嗍菍慡QL代碼從數(shù)據(jù)庫取出數(shù)據(jù))。
后面二點(diǎn),更重要是對(duì)業(yè)務(wù)了解,更行業(yè)知識(shí)了解,你才能進(jìn)行相應(yīng)的數(shù)據(jù)解讀,才能讓數(shù)據(jù)產(chǎn)生真正的價(jià)值,不是嗎?對(duì)于新進(jìn)入數(shù)據(jù)行業(yè)或者剛進(jìn)入數(shù)據(jù)行業(yè)的朋友來說:行業(yè)知識(shí)都重要,也許你看到很多的數(shù)據(jù)行業(yè)的同仁,在微博或者寫文章說,數(shù)據(jù)分析思想、行業(yè)知識(shí)、業(yè)務(wù)知識(shí)很重要。我非常同意。
因?yàn)樽鳛閿?shù)據(jù)分析師,在發(fā)表任何觀點(diǎn)的時(shí)候,都不要忘記你居于的背景是什么?但大家一定不要忘記了一些基本的技術(shù),不要把基礎(chǔ)去忘記了,如果一名數(shù)據(jù)分析師不會(huì)寫SQL,那麻煩就大了。哈哈。
你只有把數(shù)據(jù)先取對(duì)了,才能正確的分析,否則一切都是錯(cuò)誤了,甚至?xí)?dǎo)致致命的結(jié)論。
新同學(xué),還是好好花時(shí)間把基礎(chǔ)技能學(xué)好。因?yàn)榛A(chǔ)技能你可以在短期內(nèi)快速提高,但是在行業(yè)、業(yè)務(wù)知識(shí)的是一點(diǎn)一滴的積累起來的,有時(shí)候是急不來的,這更需要花時(shí)間慢慢去沉淀下來。
不要過于追求很高級(jí)、高深的統(tǒng)計(jì)方法,我提倡有空還是要多去學(xué)習(xí)基本的統(tǒng)計(jì)學(xué)知識(shí),從而提高工作效率,達(dá)到事半功倍。以我經(jīng)驗(yàn)來說,我負(fù)責(zé)任告訴新進(jìn)的同學(xué),永遠(yuǎn)不要忘記基本知識(shí)、基本技能的學(xué)習(xí)。
二、要有三心。1、細(xì)心。
2、耐心。3、靜心。
數(shù)據(jù)分析師其實(shí)是一個(gè)細(xì)活,特別是在前文提到的例子中的前面二點(diǎn)。而且在數(shù)據(jù)分析過程中,是一個(gè)不斷循環(huán)迭代的過程,所以一定在耐心,不怕麻煩,能靜下心來不斷去修改自己的分析思路。
三、形成自己結(jié)構(gòu)化的思維。數(shù)據(jù)分析師一定要嚴(yán)謹(jǐn)。
而嚴(yán)謹(jǐn)一定要很強(qiáng)的結(jié)構(gòu)化思維,如何提高結(jié)構(gòu)化思維,也許只需要工作隊(duì)中不斷的實(shí)踐。但是我推薦你用mindmanagement,首先把你的整個(gè)思路整理出來,然后根據(jù)分析不斷深入、得到的信息不斷增加的情況下去完善你的結(jié)構(gòu),慢慢你會(huì)形成一套自己的思想。
當(dāng)然有空的時(shí)候去看看《麥肯錫思維》、結(jié)構(gòu)化邏輯思維訓(xùn)練的書也不錯(cuò)。在我以為多看看你身邊更資深同事的報(bào)告,多問問他們是怎么去考慮這個(gè)問題的,別人的思想是怎么樣的?他是怎么構(gòu)建整個(gè)分析體系的。
四、業(yè)務(wù)、行業(yè)、商業(yè)知識(shí)。當(dāng)你掌握好前面的基本知識(shí)和一些技巧性東西的時(shí)候,你應(yīng)該在業(yè)務(wù)、行業(yè)、商業(yè)知識(shí)的學(xué)習(xí)與積累上了。
這個(gè)放在最后,不是不重要,而且非常重要,如果前面三點(diǎn)是決定你能否進(jìn)入這個(gè)行業(yè),那么這則是你進(jìn)入這個(gè)行業(yè)后,能否成功的最根本的因素。 數(shù)據(jù)與具體行業(yè)知識(shí)的關(guān)系,比作池塘中魚與水的關(guān)系一點(diǎn)都不過分,數(shù)據(jù)(魚)離開了行業(yè)、業(yè)務(wù)背景(水)是死的,是不可能是“活”。
而沒有“魚”的水,更像是“死”水,你去根本不知道看什么(方向在哪)。如何提高業(yè)務(wù)知識(shí),特別是沒有相關(guān)背景的同學(xué)。
很簡單,我總結(jié)了幾點(diǎn):1、多向業(yè)務(wù)部門的同事請(qǐng)教,多溝通。多向他們請(qǐng)教,數(shù)據(jù)分析師與業(yè)務(wù)部門沒有利益沖突,而更向是共生體,所以如果你態(tài)度好,相信業(yè)務(wù)部門的同事也很愿意把他們知道的告訴你。
2、永遠(yuǎn)不要忘記了google大神,定制一些行業(yè)的關(guān)鍵字,每天都先看看定制的郵件。3、每天有空去瀏。
分析大數(shù)據(jù),R語言和Linux系統(tǒng)比較有幫助,運(yùn)用到的方法原理可以翻翻大學(xué)的統(tǒng)計(jì)學(xué),不需要完全理解,重在應(yīng)用。
分析簡單數(shù)據(jù),Excel就可以了。Excel本意就是智能,功能很強(qiáng),容易上手。我沒有見過有人說自己精通Excel的,最多是熟悉Excel。Excel的函數(shù)可以幫助你處理大部分?jǐn)?shù)據(jù)。
數(shù)據(jù)分析是指用適當(dāng)?shù)慕y(tǒng)計(jì)分析方法對(duì)收集來的大量數(shù)據(jù)進(jìn)行分析,提取有用信息和形成結(jié)論而對(duì)數(shù)據(jù)加以詳細(xì)研究和概括總結(jié)的過程。這一過程也是質(zhì)量管理體系的支持過程。在實(shí)用中,數(shù)據(jù)分析可幫助人們作出判斷,以便采取適當(dāng)行動(dòng)。
數(shù)據(jù)分析的數(shù)學(xué)基礎(chǔ)在20世紀(jì)早期就已確立,但直到計(jì)算機(jī)的出現(xiàn)才使得實(shí)際操作成為可能,并使得數(shù)據(jù)分析得以推廣。數(shù)據(jù)分析是數(shù)學(xué)與計(jì)算機(jī)科學(xué)相結(jié)合的產(chǎn)物。
“啤酒與尿布”的故事產(chǎn)生于20世紀(jì)90年代的美國沃爾瑪超市中,沃爾瑪?shù)某泄芾砣藛T分析銷售數(shù)據(jù)時(shí)發(fā)現(xiàn)了一個(gè)令人難于理解的現(xiàn)象:在某些特定的情況下,“啤酒”與“尿布”兩件看上去毫無關(guān)系的商品會(huì)經(jīng)常出現(xiàn)在同一個(gè)購物籃中,這種獨(dú)特的銷售現(xiàn)象引起了管理人員的注意,經(jīng)過后續(xù)調(diào)查發(fā)現(xiàn),這種現(xiàn)象出現(xiàn)在年輕的父親身上。
在美國有嬰兒的家庭中,一般是母親在家中照看嬰兒,年輕的父親前去超市購買尿布。父親在購買尿布的同時(shí),往往會(huì)順便為自己購買啤酒,這樣就會(huì)出現(xiàn)啤酒與尿布這兩件看上去不相干的商品經(jīng)常會(huì)出現(xiàn)在同一個(gè)購物籃的現(xiàn)象。如果這個(gè)年輕的父親在賣場只能買到兩件商品之一,則他很有可能會(huì)放棄購物而到另一家商店, 直到可以一次同時(shí)買到啤酒與尿布為止。沃爾瑪發(fā)現(xiàn)了這一獨(dú)特的現(xiàn)象,開始在賣場嘗試將啤酒與尿布擺放在相同的區(qū)域,讓年輕的父親可以同時(shí)找到這兩件商品,并很快地完成購物;而沃爾瑪超市也可以讓這些客戶一次購買兩件商品、而不是一件,從而獲得了很好的商品銷售收入,這就是“啤酒與尿布” 故事的由來。
當(dāng)然“啤酒與尿布”的故事必須具有技術(shù)方面的支持。1993年美國學(xué)者Agrawal提出通過分析購物籃中的商品集合,從而找出商品之間關(guān)聯(lián)關(guān)系的關(guān)聯(lián)算法,并根據(jù)商品之間的關(guān)系,找出客戶的購買行為。艾格拉沃從數(shù)學(xué)及計(jì)算機(jī)算法角度提 出了商品關(guān)聯(lián)關(guān)系的計(jì)算方法——Aprior算法。沃爾瑪從上個(gè)世紀(jì) 90 年代嘗試將 Aprior 算 法引入到 POS機(jī)數(shù)據(jù)分析中,并獲得了成功,于是產(chǎn)生了“啤酒與尿布”的故事。
數(shù)據(jù)分析的三個(gè)常用方法:
1. 數(shù)據(jù)趨勢分析
趨勢分析一般而言,適用于產(chǎn)品核心指標(biāo)的長期跟蹤,比如,點(diǎn)擊率,GMV,活躍用戶數(shù)等。做出簡單的數(shù)據(jù)趨勢圖,并不算是趨勢分析,趨勢分析更多的是需要明確數(shù)據(jù)的變化,以及對(duì)變化原因進(jìn)行分析。
趨勢分析,最好的產(chǎn)出是比值。在趨勢分析的時(shí)候需要明確幾個(gè)概念:環(huán)比,同比,定基比。環(huán)比是指,是本期統(tǒng)計(jì)數(shù)據(jù)與上期比較,例如2019年2月份與2019年1月份相比較,環(huán)比可以知道最近的變化趨勢,但是會(huì)有些季節(jié)性差異。為了消除季節(jié)差異,于是有了同比的概念,例如2019年2月份和2018年2月份進(jìn)行比較。定基比更好理解,就是和某個(gè)基點(diǎn)進(jìn)行比較,比如2018年1月作為基點(diǎn),定基比則為2019年2月和2018年1月進(jìn)行比較。
比如:2019年2月份某APP月活躍用戶數(shù)我2000萬,相比1月份,環(huán)比增加2%,相比去年2月份,同比增長20%。趨勢分析另一個(gè)核心目的則是對(duì)趨勢做出解釋,對(duì)于趨勢線中明顯的拐點(diǎn),發(fā)生了什么事情要給出合理的解釋,無論是外部原因還是內(nèi)部原因。
2. 數(shù)據(jù)對(duì)比分析
數(shù)據(jù)的趨勢變化獨(dú)立的看,其實(shí)很多情況下并不能說明問題,比如如果一個(gè)企業(yè)盈利增長10%,我們并無法判斷這個(gè)企業(yè)的好壞,如果這個(gè)企業(yè)所處行業(yè)的其他企業(yè)普遍為負(fù)增長,則5%很多,如果行業(yè)其他企業(yè)增長平均為50%,則這是一個(gè)很差的數(shù)據(jù)。
對(duì)比分析,就是給孤立的數(shù)據(jù)一個(gè)合理的參考系,否則孤立的數(shù)據(jù)毫無意義。在此我向大家推薦一個(gè)大數(shù)據(jù)技術(shù)交流圈: 658558542 突破技術(shù)瓶頸,提升思維能力 。
一般而言,對(duì)比的數(shù)據(jù)是數(shù)據(jù)的基本面,比如行業(yè)的情況,全站的情況等。有的時(shí)候,在產(chǎn)品迭代測試的時(shí)候,為了增加說服力,會(huì)人為的設(shè)置對(duì)比的基準(zhǔn)。也就是A/B test。
比較試驗(yàn)最關(guān)鍵的是A/B兩組只保持單一變量,其他條件保持一致。比如測試首頁改版的效果,就需要保持A/B兩組用戶質(zhì)量保持相同,上線時(shí)間保持相同,來源渠道相同等。只有這樣才能得到比較有說服力的數(shù)據(jù)。
3. 數(shù)據(jù)細(xì)分分析
在得到一些初步結(jié)論的時(shí)候,需要進(jìn)一步地細(xì)拆,因?yàn)樵谝恍┚C合指標(biāo)的使用過程中,會(huì)抹殺一些關(guān)鍵的數(shù)據(jù)細(xì)節(jié),而指標(biāo)本身的變化,也需要分析變化產(chǎn)生的原因。這里的細(xì)分一定要進(jìn)行多維度的細(xì)拆。常見的拆分方法包括:
分時(shí) :不同時(shí)間短數(shù)據(jù)是否有變化。
分渠道 :不同來源的流量或者產(chǎn)品是否有變化。
分用戶 :新注冊(cè)用戶和老用戶相比是否有差異,高等級(jí)用戶和低等級(jí)用戶相比是否有差異。
分地區(qū) :不同地區(qū)的數(shù)據(jù)是否有變化。
組成拆分 :比如搜索由搜索詞組成,可以拆分不同搜索詞;店鋪流量由不用店鋪產(chǎn)生,可以分拆不同的店鋪。
細(xì)分分析是一個(gè)非常重要的手段,多問一些為什么,才是得到結(jié)論的關(guān)鍵,而一步一步拆分,就是在不斷問為什么的過程。
數(shù)據(jù)分析師的工作一定要好好把握。關(guān)于數(shù)據(jù)分析師的思路和方法,小編覺得是這樣的:
首先,你要明白什么是數(shù)據(jù)分析;
第二你要知道數(shù)據(jù)分析的目的;
第三、清楚數(shù)據(jù)分析的分類以及作用:現(xiàn)狀分析、原因分析、預(yù)測分析第四,如何進(jìn)行數(shù)據(jù)分析:
1.明確目的和思路
2.數(shù)據(jù)收集
3.數(shù)據(jù)處理
4.數(shù)據(jù)分析
數(shù)據(jù)處理好之后,就要進(jìn)行數(shù)據(jù)分析,數(shù)據(jù)分析是用適當(dāng)?shù)姆治龇椒肮ぞ?,?duì)處理過的數(shù)據(jù)進(jìn)行分析,提取有價(jià)值的信息,形成有效結(jié)論的過程。
常用的數(shù)據(jù)分析工具,掌握Excel的數(shù)據(jù)透視表,就能解決大多數(shù)的問題。需要的話,可以再有針對(duì)性的學(xué)習(xí)SPSS、SAS等。
數(shù)據(jù)挖掘是一種高級(jí)的數(shù)據(jù)分析方法,你需要掌握數(shù)據(jù)挖掘基礎(chǔ)理論,數(shù)據(jù)庫操作Phython,R語言, Java 等編程語言的使用以及高級(jí)的數(shù)據(jù)可視化技術(shù)。要側(cè)重解決四類數(shù)據(jù)分析問題:分類、聚類、關(guān)聯(lián)和預(yù)測,重點(diǎn)在尋找模式與規(guī)律。
5.數(shù)據(jù)展現(xiàn)
一般情況下,數(shù)據(jù)是通過表格和圖形的方式來呈現(xiàn)的。常用的數(shù)據(jù)圖表包括餅圖、柱形圖、條形圖、折線圖、氣泡圖、散點(diǎn)圖、雷達(dá)圖等。進(jìn)一步加工整理變成我們需要的圖形,如金字塔圖、矩陣圖、漏斗圖、帕雷托圖等。
圖表制作的五個(gè)步驟:
確定要表達(dá)主題;確定哪種圖表最適合;選擇數(shù)據(jù)制作圖表;檢查是否真實(shí);反映數(shù)據(jù)檢查是否表達(dá)觀點(diǎn)
6.報(bào)告撰寫
數(shù)據(jù)分析的四大誤區(qū)
1.目的不明確,為了做而作,導(dǎo)致分析效果不明確;
2.對(duì)與行業(yè)、公司業(yè)務(wù)還有其他考慮因素認(rèn)知不清楚,分析結(jié)果偏離實(shí)際。
3.為了方法而方法,為了工具而工具,只要能解決問題的方法和工具就是好的方法和工具;
4.數(shù)據(jù)本身是客觀的,但被解讀出來的數(shù)據(jù)是主觀的。同樣的數(shù)據(jù)由不同的人分析很可能得出完全相反的結(jié)論,所以一定不能提前帶著觀點(diǎn)去分析。
每個(gè)人都有自己的工作特點(diǎn)和方法傾向,不過對(duì)于數(shù)據(jù)分析這種很有邏輯的工作,邏輯思路一定要處理清楚,該遵從的客觀標(biāo)準(zhǔn)還是要嚴(yán)格遵守,而且數(shù)據(jù)分析只有產(chǎn)生了價(jià)值,你做的這份工作才算真在發(fā)揮了作用。
總的分兩種:
1 列表法
將實(shí)驗(yàn)數(shù)據(jù)按一定規(guī)律用列表方式表達(dá)出來是記錄和處理實(shí)驗(yàn)數(shù)據(jù)最常用的方法。表格的設(shè)計(jì)要求對(duì)應(yīng)關(guān)系清楚、簡單明了、有利于發(fā)現(xiàn)相關(guān)量之間的物理關(guān)系;此外還要求在標(biāo)題欄中注明物理量名稱、符號(hào)、數(shù)量級(jí)和單位等;根據(jù)需要還可以列出除原始數(shù)據(jù)以外的計(jì)算欄目和統(tǒng)計(jì)欄目等。最后還要求寫明表格名稱、主要測量儀器的型號(hào)、量程和準(zhǔn)確度等級(jí)、有關(guān)環(huán)境條件參數(shù)如溫度、濕度等。
2 作圖法
作圖法可以最醒目地表達(dá)物理量間的變化關(guān)系。從圖線上還可以簡便求出實(shí)驗(yàn)需要的某些結(jié)果(如直線的斜率和截距值等),讀出沒有進(jìn)行觀測的對(duì)應(yīng)點(diǎn)(內(nèi)插法),或在一定條件下從圖線的延伸部分讀到測量范圍以外的對(duì)應(yīng)點(diǎn)(外推法)。此外,還可以把某些復(fù)雜的函數(shù)關(guān)系,通過一定的變換用直線圖表示出來。例如半導(dǎo)體熱敏電阻的電阻與溫度關(guān)系為,取對(duì)數(shù)后得到,若用半對(duì)數(shù)坐標(biāo)紙,以lgR為縱軸,以1/T為橫軸畫圖,則為一條直線。
去百度文庫,查看完整內(nèi)容>
內(nèi)容來自用戶:蔣上樹
常用數(shù)據(jù)分析方法有那些
文章來源:ECP數(shù)據(jù)分析時(shí)間:2013/6/28 13:35:06發(fā)布者:常用數(shù)據(jù)分析(關(guān)注:554)
標(biāo)簽:本文包括:
常用數(shù)據(jù)分析方法:聚類分析、因子分析、相關(guān)分析、對(duì)應(yīng)分析、回歸分析、方差分析;
問卷調(diào)查常用數(shù)據(jù)分析方法:描述性統(tǒng)計(jì)分析、探索性因素分析、Cronbach'a信度系數(shù)分析、結(jié)構(gòu)方程模型分析(structural equations modeling)。
數(shù)據(jù)分析常用的圖表方法:柏拉圖(排列圖)、直方圖(Histogram)、散點(diǎn)圖(scatter diagram)、魚骨圖(Ishikawa)、FMEA、點(diǎn)圖、柱狀圖、雷達(dá)圖、趨勢圖。
數(shù)據(jù)分析統(tǒng)計(jì)工具:SPSS、minitab、JMP。
常用數(shù)據(jù)分析方法:
1、聚類分析(Cluster Analysis)
聚類分析指將物理或抽象對(duì)象的集合分組成為由類似的對(duì)象組成的多個(gè)類的分析過程。聚類是將數(shù)據(jù)分類到不同的類或者簇這樣的一個(gè)過程,所以同一個(gè)簇中的對(duì)象有很大的相似性,而不同簇間的對(duì)象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,人們不必事先給出一個(gè)分類的標(biāo)準(zhǔn),聚類分析能夠從樣本數(shù)據(jù)出發(fā),自動(dòng)進(jìn)行分類。聚類分析所使用方法的不同,常常會(huì)得到不同的結(jié)論。不同研究者對(duì)于同一組數(shù)據(jù)進(jìn)行聚類分析,所得到的聚類數(shù)未必一致。
2、因子分析(Factor Analysis)
因子分析是指研究從變量群中提取共性因子的統(tǒng)計(jì)技術(shù)。因子分析就是從大量的數(shù)據(jù)中尋找內(nèi)在的聯(lián)系,減少?zèng)Q策的困難。相關(guān)分析(直方圖JMP
聲明:本網(wǎng)站尊重并保護(hù)知識(shí)產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護(hù)條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請(qǐng)?jiān)谝粋€(gè)月內(nèi)通知我們,我們會(huì)及時(shí)刪除。
蜀ICP備2020033479號(hào)-4 Copyright ? 2016 學(xué)習(xí)鳥. 頁面生成時(shí)間:2.577秒